Some thoughts on the linearity of spectral radiances averaged over large spatial domain and long timescale

Xianglei Huang, Lei Song
University of Michigan

2011 CLARREO Science Definition Team Meeting
May 18, 2011
Outline

• Simulations using ECMWF ERA-interim reanalysis
 – Sensitivity of radiance averages to surface emissivity and spatial/temporal-varying GHG profiles

• Other related activities in my group
 – Synergy of AIRS and CERES
 – Longwave band-by-band CRF
 – Modeling capacity for sampling studies
 – Data analysis: AR5 sneak peak
Simulations with ERA-interim data

• Radiance simulator at UM
 – Modtran5-based RTA (0.1 cm\(^{-1}\))
 – Local cluster operated by university (total > 10,000 CPUs)
 • Flexible rental for exclusive use with minimal cost: can rent 1000-2000 CPUs over a short notice
 • Flexible configuration to “homogenize” nodes: big help for I/O demanding jobs
 – Benchmark: 96 CPU, 6-hourly ERA-interim profiles, 1.5 ° by 1.5° resolution (120 lat 241 lon)
 – Nonscattering, 1cm\(^{-1}\) computing resolution: 2hr for 1 month, i.e. 1 day for 1 year of simulation
 – Nonscattering, 0.1cm\(^{-1}\) computing resolution: 20 hr for 1 month
 – 2-stream: a factor of 2~4
Simulations with ERA-interim data

• Radiance simulator at UM (contd.)
 – High spectral res. surface emissivity
 • Latest ASTER Spectral library v2.0
 • USGS 1km IGBP scene type (18 types, same as CERES/SARB)
 – Trace gases
 • 6-hourly ozone profiles from ERA-interim reanalysis
 • CO₂, CH₄, N₂O, CO
 – 1: McClatchey profiles for difference seasons in mid- and high latitudes
 – 2. Mean seasonal cycles at 1990s from a CTM (MOZART)
NOTE: no database gives ε_ν beyond 14 μm

From NASA/TP-1999-209362 By Wilber, Kratz, and Gupta
Applications of the simulators

• Test the impact of seasonality of trace GHGs and surface spectral emissivity on averaged radiances
 For clear-sky radiances
 – Control case: blackbody surface, constant GHG profiles
 – Ozone+ other minor GHGs case
 – Ozone + other minor GHGs + surface emissivity case
Control case: global mean clear-sky radiance 2006 Jan (1.0 cm$^{-1}$)
Deviation from the control case

- Ozone band affected most (and it is most complicated!)
- Slope in WN region also affected
- Ad hoc surface emissivity <714cm$^{-1}$
Other activities: AIRS and CERES synergy

- Huang et al. (2008) and Huang et al. (2010) developed and validated spectral ADM/algorithms for deriving 10-cm\(^{-1}\)spectral flux over the entire LW
 - Build spectral ADM based on CERES scene type def.
 - Compute spectral flux from collocated AIRS observation
 - For open oceans only in these studies
 - Extending to land surface now

<table>
<thead>
<tr>
<th>Year</th>
<th>Nighttime (W m(^{-2}))</th>
<th>Daytime (W m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.80 ± 1.34</td>
<td>0.86 ± 1.72</td>
</tr>
<tr>
<td>2004</td>
<td>0.52 ± 1.29</td>
<td>0.79 ± 1.67</td>
</tr>
<tr>
<td>2005</td>
<td>0.93 ± 1.35</td>
<td>1.81 ± 1.81</td>
</tr>
<tr>
<td>2006</td>
<td>0.86 ± 1.38</td>
<td>2.10 ± 1.81</td>
</tr>
<tr>
<td>2007</td>
<td>0.83 ± 1.40</td>
<td>2.45 ± 1.87</td>
</tr>
</tbody>
</table>

Cloudy sky over the ocean

<table>
<thead>
<tr>
<th>Year</th>
<th>Nighttime (W m(^{-2}))</th>
<th>Daytime (W m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1.63 ± 5.22</td>
<td>3.73 ± 5.94</td>
</tr>
<tr>
<td>2004</td>
<td>1.33 ± 5.16</td>
<td>3.00 ± 5.73</td>
</tr>
<tr>
<td>2005</td>
<td>1.75 ± 5.32</td>
<td>4.06 ± 6.03</td>
</tr>
<tr>
<td>2006</td>
<td>1.58 ± 5.42</td>
<td>4.35 ± 6.08</td>
</tr>
<tr>
<td>2007</td>
<td>1.50 ± 5.37</td>
<td>4.57 ± 6.06</td>
</tr>
</tbody>
</table>

Clear sky over the ocean

Daytime drift corrected in CERES SSF Edition 3
Annual-mean CRF in 2004 (Tropical oceans)

<table>
<thead>
<tr>
<th></th>
<th>AIRS&CERES observed CRF (Wm(^{-2}))</th>
<th>AM2 simulated CRF (Wm(^{-2}))</th>
<th>NASA GEOS-5 simulated CRF (Wm(^{-2}))</th>
<th>Canada CanAM4 simulated CRF (Wm(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW broadband</td>
<td>27.45 (100%)</td>
<td>28.13 (100%)</td>
<td>28.30 (100%)</td>
<td>27.27 (100%)</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>5.36 (19.5%)</td>
<td>5.33 (19.0%)</td>
<td>5.08 (17.9%)</td>
<td>4.45 (16.3%)</td>
</tr>
<tr>
<td>0-560cm(^{-1}); >1400cm(^{-1})</td>
<td>5.36 (19.5%)</td>
<td>5.33 (19.0%)</td>
<td>5.08 (17.9%)</td>
<td>4.45 (16.3%)</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>4.18 (15.2%)</td>
<td>3.74 (13.3%)</td>
<td>5.15 (18.2%)</td>
<td>4.82 (17.7%)</td>
</tr>
<tr>
<td>560-800cm(^{-1})</td>
<td>4.18 (15.2%)</td>
<td>3.74 (13.3%)</td>
<td>5.15 (18.2%)</td>
<td>4.82 (17.7%)</td>
</tr>
<tr>
<td>WN</td>
<td>9.35 (34.1%)</td>
<td>10.03 (35.6%)</td>
<td>9.06 (32.0%)</td>
<td>8.78 (32.2%)</td>
</tr>
<tr>
<td>800-990cm(^{-1})</td>
<td>9.35 (34.1%)</td>
<td>10.03 (35.6%)</td>
<td>9.06 (32.0%)</td>
<td>8.78 (32.2%)</td>
</tr>
<tr>
<td>O(_3)</td>
<td>2.02 (7.0%)</td>
<td>1.68 (6.0%)</td>
<td>3.62 (12.8%)</td>
<td>3.73 (13.7%)</td>
</tr>
<tr>
<td>990-1070cm(^{-1})</td>
<td>2.02 (7.0%)</td>
<td>1.68 (6.0%)</td>
<td>3.62 (12.8%)</td>
<td>3.73 (13.7%)</td>
</tr>
<tr>
<td>WN</td>
<td>6.53 (23.8%)</td>
<td>7.34 (26.1%)</td>
<td>5.43 (19.1%)</td>
<td>5.48 (20.1%)</td>
</tr>
<tr>
<td>H(_2)O NO(_2) CH(_4)</td>
<td>6.53 (23.8%)</td>
<td>7.34 (26.1%)</td>
<td>5.43 (19.1%)</td>
<td>5.48 (20.1%)</td>
</tr>
</tbody>
</table>

Difference in one band could be as large as or even larger than the broadband difference

In collaboration with Jerry Potter, Lazaros Oreopoulos, et al.
Annual-mean CRF map: 1070-1400 cm$^{-1}$

GEOS-5: lower than obs. and a narrow range: 0.18-0.22
GFDL AM2: higher than obs.

In collaboration with Jerry Potter, Lazaros Oreopoulos, et al.
High-resolution GCMs and CRM

• GFDL HiRam model (50km resolution) [in collaboration with Ming Zhao at GFDL]
 – Reliable in simulating climatology of many variables (Zhao, 2009)
 – One year of 3-hrly output of TOA LW and SW fields and some ancillary fields: A data set for studying sampling issues.

• In-house modeling capability
 – AM2
 – Goddard Cumulus Ensemble (GCE) model: 1km-4km channel mode with MERRA initialization
AR5 model analysis: sneak peak

Difference in 5-year mean albedo (GCM all forcings run– CERES EBAF)

In collaboration with Jerry Potter
Recap

• To be realistic, time-varying ozone profiles have to be included. Its impact on global mean radiance is non negligible (or exclude ozone bands)

• Surface emissivity also affects global mean radiances. Impact on regional radiance could be even larger.
 – Moreover, land surface itself is changing over years.

• Connecting spectral radiances and spectral fluxes
 – Usages in GCM evaluations
 – Relations with the band-by-band (spectral) cloud feedback?