Error budget analysis for the reflected solar instrument of CLARREO

K. J. Thome
Biospheric Sciences Branch
Goddard Space Flight Center
Introduction

Climate Absolute Radiance and Refractivity Observatory

- One of the highest priority missions described in the NRC Earth Science Decadal Survey
- Recommended in first group of 4 missions (“Tier 1”)
- A climate-focused mission
 - Foundation is on-orbit S.I. traceability of calibration
 - Long-term trend detection
 - Improvement and testing of climate predictions
 - Calibration of operational and research sensors
- Joint NASA / NOAA mission
- NOAA portion of CLARREO is the continuation of solar irradiance and earth radiation budget observations (TSIS and CERES)
Talk overview

Concentrate discussion on reflected solar portion of the spectrum

- Overview of measurements
 - Benchmark
 - Intercalibration

- Describe probable calibration approaches
 - Prelaunch
 - On orbit

- Discussion of error budgets and uncertainty sources

- Path forward for lower uncertainties
CLARREO – What it is and not

Not a replacement for process missions nor operational sounders

- NASA portion of CLARREO is complementary to continuity of TSIS and CERES (NOAA part of CLARREO).
- CLARREO addresses climate science questions using one of three methodologies:
 - Directly with current technology and without the need for any other observations
 - Confirming recent advances in metrological technology and sampling strategies
 - Combine with other satellite solar and infrared sensors
Calibration is the foundation

SI traceability is the key to the mission

- Long-term data sets
- Possibility of data gaps
- Planning ahead is vital
Benchmark versus reference

CLARREO data will serve as a reference mission as well as providing benchmark data

- Stated earlier as two of the three methodologies
- Benchmark data stand on their own as a means to understand the accuracy of the climate models
- Reference calibration allows the incorporation of other sensors to develop a more complete benchmark data set
- The solar reflected sensor will rely equally on both benchmark and reference approach
 - Simplifies CLARREO instrument
 - Reflected solar is complicated by the multi-dimensionality issue
Dimensionality problem

A key difficulty with the reflected solar is dependency on geometry and other effects

- Determining signal from climate effects means separation from natural variability
- Natural variability caused by
 - Surface reflectance changes
 - View/solar geometry
 - Atmospheric effects
 - Earth-sun distance
- Some of these are predictable
- Another issue is what is meant by reflectance
 - Directional
 - Hemispheric
Reflected solar calibration

The goals of CLARREO lead to accuracy requirements that are challenging

- Current **imager** missions are achieving 1-5% absolute radiometric accuracy
- Slightly better results when calibrated in reflectance
- Limits to accuracy on past missions
 - Emphasis not on calibration
 - Complex sensors
 - Costs and scheduling
 - Approaches chosen to obtain traceability
Prelaunch approaches

Transfer radiometers and portable sources provide the most reasonable prelaunch approaches

- Round-robin activities evaluate consistency of preflight sources
- SI traceability through sources and detectors
Prelaunch solar calibration

Using the sun as a source provides a constant, yet portable source.
Laboratory example

Detector-based versus source-based results with a VNIR transfer radiometer

- Trap configuration allows for a prediction of the absolute, radiometric calibration
- Upper graph shows difference between predicted and measured
- Lower shows comparison between solar, panel and lamp-based results
Prelaunch error budgets

While there are numerous error sources in any approach, typically one will dominate

- Source-based approaches are dominated by knowledge of the source
 - Lamp sources with 1-2% absolute uncertainty
 - Solar source (on the ground) can be known to similar accuracy relative to the solar model

- Detector-based approaches lead to lower uncertainties
 - Typically at limited wavelengths (need to assess ability to extrapolate/interpolate)
Use same philosophy on orbit as for the prelaunch calibration procedures

- Specific approaches are not determined at this time
- Solar-based calibration
 - Direct views
 - Diffuser views
- Reflectance-based data collections
- Onboard lamps
- Lunar views
Reference calibration

CLARREO will serve as a reference for other sensors to allow inclusion of their data

- Desert sites
 - Used extensively since 1980s
 - BRDF and spectral nature well understood

- Arctic sites
 - Simultaneous Nadir Overpasses
 - Dome C

- More recent work
 - Lunar views
 - Application or data product approaches
 - In-situ ground measurement methods

- CLARREO approach will rely on near-coincident view approaches
Radiance comparisons

MODIS and ASTER offer same platform, same view coincident views

- Upper graph shows ASTER Band 1 calibration coefficient derived from Railroad Valley data
- Lower graph shows results from multiple sites
- Lower graph also shows in-situ results

\[\text{Radiance comparisons} \]

\[\text{MODIS and ASTER offer same platform, same view coincident views} \]

- Upper graph shows ASTER Band 1 calibration coefficient derived from Railroad Valley data
- Lower graph shows results from multiple sites
- Lower graph also shows in-situ results
Spectral band differences

<table>
<thead>
<tr>
<th>ETM+ Band 2 Analogs</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Landsat-7 ETM+ B2</td>
<td>1</td>
<td>0.996</td>
<td>1.005</td>
<td>0.990</td>
<td>0.988</td>
<td>0.989</td>
</tr>
<tr>
<td>B: EO-1 ALI B2</td>
<td>1</td>
<td>1.009</td>
<td>0.994</td>
<td>0.992</td>
<td>0.993</td>
<td></td>
</tr>
<tr>
<td>C: Terra ASTER B1</td>
<td>1</td>
<td>0.985</td>
<td>0.983</td>
<td>0.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: Terra MODIS B4</td>
<td></td>
<td>1</td>
<td>0.998</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E: Terra MODIS B12</td>
<td>1</td>
<td>1.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F: Terra MISR B2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uncertainty due to spectral differences should decrease with the hyperspectral data from CLARREO.
Solar irradiance effects

Selection of solar model plays a role in the SWIR

- Working in reflectance removes this issue
- CLARREO will have the advantage of data from TSIS to provide spectral irradiance
- Still need to ensure rest of community uses similar data

![Bar chart showing the percentage difference in different bands for WRC-based, Modtran-based, and AVIRIS models.](chart.png)
Summary

The CLARREO goals for accuracy are an achievable challenge

- Laboratory techniques have improved
 - Technology
 - Processes are better understood
 - Pathway through detector-based approaches
- Transfer to orbit with SI traceability is an issue for the reflected solar
 - Sun as a transfer standard
 - Working in reflectance relative to the sun
- Reference calibration of other sensors is needed to develop the benchmark faster
- Combination of all techniques is needed in order to reach the goals of CLARREO