Polar-orbiting Sounder Applications for Alaska

William L. Smith Sr1,2, Elisabeth Weisz1, Nadia Smith1, and Mitch Goldberg3

1 UW Space Science and Engineering Center, Madison WI
2 HU Atmospheric and Planetary Sciences, Hampton VA
3 NOAA JPSS Program Office, Greenbelt MD
Satellites with Ultra-spectral Sounders

Aqua (13:30 LST)

Suomi NPP/JPSS (13:30 LST)

Metop A & B (10:20 & 9:30 LST)
AIRS
Atmospheric InfraRed Sounder
Grating spectrometer
166 kg, 256 W
13.5 km FOV at nadir, contiguous
Launched on NASA Aqua in 2002

IASI
Infrared Atmospheric Sounding Interferometer
Michelson interferometer
236 kg, 210 W
2x2 12 km FOVs at nadir, non-contiguous
Launched on Metop-A in 2006

CrIS*
Cross-track Infrared Sounder
Michelson interferometer
146 kg, 110 W
3x3 14 km FOVs at nadir, contiguous
Launched on Suomi NPP, 28 Oct 2011
* Passive cooler with vibration isolation that was not deployed

CrIS ~ the size of HIRS
Noise Comparison

CrIS, AIRS, IASI

SNPP CrIS Performance is excellent

CrIS NEN
4x smaller in
15μm CO₂ band
Ultra-spectral Sounding

- First Demonstrated with the UW High-resolution Interferometer Sounder (HIS) from the NASA ER-2 Aircraft
- High S/N Enables Accurate De-convolution of Vertically Smeared Thermal Radiance Signals

High Vertical Resolution Provided by High Spectral Resolution

- Spectrum
 Several thousand spectral channels are observed to profile the atmosphere with high vertical resolution

- Soundings
 Ultra-spectral resolution sounder provides 1 K / 15% temperature and moisture accuracy for 1-2 km layers
The dual-regression retrieval technique* is used to retrieve the following single FOV products under clear and cloudy conditions from input direct broadcast or archived AIRS, IASI and CrIS L1 radiance files:

- atmospheric temperature [K] at 101 pressure levels
- atmospheric moisture [g/kg] at 101 pressure levels
- atmospheric ozone [ppmv] at 101 pressure levels
- atmospheric relative humidity [%] at 101 pressure levels
- atmospheric dew point temperature [K] at 101 pressure levels
- surface skin temperature [K]
- surface emissivity (at full spectrum)
- total precipitable water [cm]
- precipitable water 1 (900 hPa to surface) [cm]
- precipitable water 2 (700 to 900 hPa) [cm]
- precipitable water 3 (300 to 700 hPa) [cm]
- total ozone amount (vertically integrated) [Dobson units]
- lifted index [°C]
- convective available potential energy [J/kg]
- CO2 concentration [ppmv]
- cloud top pressure [hPa]
- cloud top temperature [K]
- cloud optical thickness
- effective cloud emissivity
- cloud mask (values: 0 clear, 1 cloud)

Available at http://cimss.ssec.wisc.edu/cspp/

- Weisz, E., W. L. Smith, N. Smith (2013), Advances in simultaneous atmospheric profile and cloud parameter regression based retrieval from high-spectral resolution radiance measurements, Accepted for publication in *JGR-Atmospheres*.
Gulf of Alaska low pressure system (26 Sept 2012)

Suomi NPP VIIRS 0.7 μm Day/Night Band and 11.45 μm IR channel

From: http://cimss.ssec.wisc.edu/goes/blog/archives/date/2012/09/26
Gulf of Alaska low pressure system (26 Sept 2012)

CrIS 20120926 225217, 230017
BT [K] at 910.0 cm$^{-1}$

http://rammb.cira.colostate.edu/projects/npp/
Skew-T (26 Sept 2012)

CrIS 2012-09-26
Temperature [K] at 496.6 hPa

220
230
240
250
260

1
2
GDAS
RTVL
CTOP

3
4
5
6

CrIS 2012-09-26 UTC Pixel 78/11 (978)
CrIS 2012-09-26 UTC Pixel 60/82 (2850)
CrIS 2012-09-26 UTC Pixel 59/66 (5909)
CrIS 2012-09-26 UTC Pixel 44/101 (9044)
CrIS 2012-09-26 UTC Pixel 65/82 (7355)
CrIS 2012-09-26 UTC Pixel 53/132 (11843)
CrIS CTH Comparison with CALIPSO (26 Sept 2012)

CALIOP (2012-09-26T21-58-07ZD) Total Attenuated Backscatter 532 nm, CrIS granule 23:00 UTC
Sounding retrievals provide 3-d structure of storm systems
Temperature Surface to 100 hPa Movie (26 Sept 2012)
IASI, CrIS and AIRS (01 Nov 2012)

21:29 UTC
IASI 20121101 212954
BT [K] at 910.0 cm⁻¹

23:19 UTC
CrIS 20121101 231921
BT [K] at 910.0 cm⁻¹

23:47 UTC
AIRS 20121101 234731 G239
BT [K] at 911.6 cm⁻¹
IASI and CrIS differences 500 hPa RH & CTOP (01 Nov 2012)

21:29 UTC

IASI RH [%] at 497 hPa

23:19 UTC

CrIS RH [%] at 497 hPa

~ 1.8 hour change

CrIS-IASI RH [%] at 497 hPa

IASI CTOP [hPa]

CrIS CTOP [hPa]

CrIS-IASI CTOP [hPa]
CrIS and AIRS differences 500 hPa RH & CTOP (01 Nov 2012)

23:19 UTC
CrIS RH [%] at 497 hPa

23:47 UTC
AIRS RH [%] at 497 hPa

~ 38 min change
AIRS-CrIS RH [%] at 497 hPa

CrIS CTOP [hPa]

AIRS CTOP [hPa]

AIRS-CrIS CTOP [hPa]
IASI and CrIS differences 500 hPa T & LI (01 Nov 2012)

21:29 UTC
IASI Temperature [K] at 497 hPa

23:19 UTC
CrIS Temperature [K] at 497 hPa

~ 1.8 hour change
CrIS-IASI Temperature [K] at 497 hPa

IASI Lifted Index [°C]

CrIS Lifted Index [°C]

CrIS-IASI Lifted Index [°C]
CrIS and AIRS differences 500hPa T & LI (01 Nov 2012)

23:19 UTC
CrIS Temperature [K] at 497 hPa
AirS Temperature [K] at 497 hPa
CrIS Lifted Index [°C]

23:47 UTC
AirS Temperature [K] at 497 hPa
AirS-CrIS Temperature [K] at 497 hPa
AirS Lifted Index [°C]

~ 38 min change
AirS-CrIS Lifted Index [°C]
28 Jan 2013 – satellite overpasses used to create atmospheric water vapor animation

Overpasses 01-28-2013

Note: AIRS 23:53 (G239) and 23:59 (G240) from 01-27-2013
Moisture Changes and Motion from Consecutive Polar Satellite Overpasses of North Alaska

Relative Humidity [%] at 300 hPa Movie (27 - 29 Jan 2013)
AIRS and ATMS H₂O Retrieved Winds at 400hPa

AIRS 20 July 2012 0505 UTC
ATMS 20 July 2012 0551 UTC

Specific humidity retrievals.
All winds (blue); Quality controlled winds(yellow)

Consecutive Water Vapor Soundings Provide Altitude Resolved Atmospheric Motion Vectors
Summary

• There are four satellites in Polar orbit carrying ultraspectral sounding instruments

• These four satellites provide high temporal resolution sounding and imagery for the Alaskan region

• The sounder data provides quantitative interpretation of weather imagery (e.g., the altitude of cloud and moisture features)

• High temporal frequency of polar satellite soundings at high latitudes enables the observation of atmospheric tendencies (e.g., stability change) and moisture flux and wind profiles
Comparison of CrIMSS and NUCAPS EDRs

<table>
<thead>
<tr>
<th></th>
<th>CrIMSS-EDR</th>
<th>NUCAPS-EDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology</td>
<td>Simultaneous Optimal Estimation</td>
<td>Sequential Singular Value Decomposition</td>
</tr>
<tr>
<td>Channels used</td>
<td>All, except non-LTE in daytime</td>
<td>Selected subsets</td>
</tr>
<tr>
<td>Clouds</td>
<td>Cloud clearing, 3-cluster approach</td>
<td>Cloud clearing, 9-FOV approach</td>
</tr>
<tr>
<td>Forward model</td>
<td>OSS for both IR and MW</td>
<td>Sarta for IR, MIT for MW</td>
</tr>
<tr>
<td>Apodization</td>
<td>Blackman-Harris</td>
<td>Hamming</td>
</tr>
<tr>
<td>Regularization</td>
<td>$T/q/O3/\varepsilon$ covariance matrices</td>
<td>dR/dX for state parameters held constant + smoothing</td>
</tr>
<tr>
<td>EDRs</td>
<td>AVTP, AVMP, AVPP</td>
<td>AVTP, AVMP, $z(p)$, CCR, O3, CO, CO2, CH4, HNO3, SO2, N2O,</td>
</tr>
<tr>
<td>IPs</td>
<td>O3-IP</td>
<td>SST, LST, emissivity, cloud fraction and pressures, convective parameters</td>
</tr>
<tr>
<td>RIPs</td>
<td>RIPS: SST, LST, emissivity</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>42, 1-km AVTP layers</td>
<td>All profiles on 100 levels (~0.025 km)</td>
</tr>
<tr>
<td></td>
<td>22, 2-km AVMP layers</td>
<td>Full state (can compute radiances).</td>
</tr>
<tr>
<td>Maturity Schedule</td>
<td>Beta: July 2012</td>
<td>Beta: Apr. 2012 (internal only)</td>
</tr>
<tr>
<td></td>
<td>Provisional: Dec. 2012</td>
<td>Provisional: July 2012 (internal only)</td>
</tr>
<tr>
<td></td>
<td>Stage.1 Validated: June 2013</td>
<td>Stage.1 Validated: Feb. 2013</td>
</tr>
<tr>
<td></td>
<td>Stage.2 Validated: Dec. 2013</td>
<td>Stage.2 Validated: Apr. 2014</td>
</tr>
</tbody>
</table>
Statistics for May 15, 2012 focus day in which Aqua and NPP orbits has high coincidence.
Trace Gas Products for Hyperspectral IR Sounders

<table>
<thead>
<tr>
<th>gas</th>
<th>Range (cm$^{-1}$)</th>
<th>Precision (Goal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$</td>
<td>1025-1050</td>
<td>10%</td>
</tr>
<tr>
<td>CO</td>
<td>2080-2200</td>
<td>15%</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>1250-1370</td>
<td>20 ppb</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>680-795</td>
<td>2 ppm</td>
</tr>
<tr>
<td></td>
<td>2375-2395</td>
<td>2 ppm</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>1340-1380</td>
<td>500%</td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>860-920</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>1320-1330</td>
<td>25%</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>1250-1315</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>2180-2250</td>
<td>10%</td>
</tr>
<tr>
<td>CFCl$_3$ (F11)</td>
<td>830-860</td>
<td>20%</td>
</tr>
<tr>
<td>CF$_2$Cl (F12)</td>
<td>900-940</td>
<td>20%</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>790-805</td>
<td>50%</td>
</tr>
</tbody>
</table>
Methane Sources

- Tropical wetlands: 16%
- Rice paddies: 13%
- Biomass burning: 7%
- Animal wastes: 5%
- Domestic ruminants: 13%
- Termites: 2%
- Energy (pipes, wells, coal mines): 18%
- Landfills: 7%
- Wastewater: 4%
- Others: 7%

Ref.: Lelieveld, 1998 & Houwelling 2002 (600 Tg total)

Note: Approximately 50% of sources are anthropogenic

Trees (Keppler et al. 2005) may contribute 62-235 Tg (10-35%), mostly in tropics
AIRS CH$_4$ Kernel Functions are Sensitive to H$_2$O(p) & T(p)

- **Polar**: Isothermal vertical structure weakens sensitivity.
- **Mid-Latitude**:
- **Tropical**: Moisture optical depth pushes peak sensitivity upwards.
Also providing the vertical information content to understand CH4 product

AIRS mid-trop measurement column

CH4 total column f/ transport model (Sander Houweling, SRON)

Fraction Determined from AIRS Radiances

Peak Pressure of AIRS Sensitivity
CMDL Flask Data Poker Flats, Alaska shows that the Seasonal cycle is a function of altitude.

- **7.5 km**
 - **385 mb**

- **5.5 km**
 - **500 mb**

- **1.5 km**
 - **850 mb**

Surface Flasks (Barrow)
Example of AIRS CO Product and Use of Trajectory Models

- **July 2004 Fires in Alaska**

- **CO from Alaskan fires was transported to the lower atmosphere in SE of US**

- **CO from southern Alaska Fires was transported to Europe at high altitudes (5 km)**
July 2004 AIRS Daily Global CO

AIRS CO at 500 mb on 20040701

CO Mixing Ratio (ppbv) at 500 mb

Range: 80 to 160+
Local PM MODIS Aqua AOD on 20040718

From Wallace McMillan, UMBC

Local PM AIRS CO at 500 mb on 20040718

CO Mixing Ratio (ppbv) at 500 mb